Home Internet of Things Aerospace Apparel Energy Defense Health Care Logistics Manufacturing Retail

Ford Motor Co. Uses Omni-ID 64-kbit Tag to Monitor Engine Production

The carmaker is one of several companies that have adopted the Adept 850—a passive UHF on-metal tag with an 8.5-meter read range and a 4-meter write range—to store and access data about each manufacturing step.
By Claire Swedberg
May 15, 2015

Ford Motor Co. is the first business to adopt a new high-memory passive ultrahigh-frequency (UHF) RFID tag from Omni-ID. The carmaker had asked Omni-ID to design a passive tag that operated in the 860 to 960 MHz UHF band, and that could be fastened to metal carriers for tracking engine components throughout the manufacturing process. That collaboration led to the Adept 850, says Ed Nabrotzky, Omni-ID's chief solutions officer. The Adept 850, which comes with 64 kilobits of user memory, can be encoded at a distance of up to 4 meters (13 feet) and has a read range of up to 8.5 meters (28 feet). The EPC Gen 2 RFID tag, which measures 65 millimeters by 45 millimeter by 8 millimeters (2.56 inches by 1.77 inches by 0.31 inch), is sealed in a tough ceramic casing, earning it an IP68 rating, which signifies it as being dust- and water-tight.

Ford is already using the new on-metal tag to monitor engine-assembly work-in-progress at multiple sites, while another automotive firm (which has asked to remain unnamed) is tracking transmissions. Since the new tag's announcement, Nabrotzky says, the response from other potential customers in the automotive and energy sectors has been surprisingly enthusiastic. "The typical comment is, 'I didn't know you could get this much memory and range from an on-metal tag,'" he states.

At the Ford manufacturing plant, an Adept 850 passive UHF tag is mounted to the base of each engine carrier.
The tag was designed to help car companies institute a more nimble manufacturing system in which vehicles and their components can be made to order in a short period of time. That requires flexibility in the assembly lines, as each vehicle or component may need to be different, while at the same time, it is crucial to track parts or vehicles in order to ensure that mistakes are not made.

Many in the automotive industry had adopted systems that used passive high-frequency (HF) 13.56 MHz RFID tags to track items through the manufacturing and assembly processes, because HF tags can be read reliably in the presence of metal, and they feature a larger user memory than UHF RFID tags.

User memory is important in the automotive industry, in which data tends to be stored on a tag rather than on software running on a server. That's because the parts often move from one facility—or even one continent—to another, and not every company working with the part can access the same server. In addition, Nabrotzky cites the need for automotive manufacturing to never become delayed. "If the [Internet] network goes down," he says, "they still want to make cars."

Login and post your comment!

Not a member?

Signup for an account now to access all of the features of RFIDJournal.com!

Case Studies Features Best Practices How-Tos
Live Events Virtual Events Webinars
Simply enter a question for our experts.
RFID Journal LIVE! RFID in Health Care LIVE! LatAm LIVE! Brasil LIVE! Europe RFID Connect Virtual Events RFID Journal Awards Webinars Presentations