Home Internet of Things Aerospace Apparel Energy Defense Health Care Logistics Manufacturing Retail

EECC Study Finds Intelligence in UHF RFID

The organization's latest "UHF RFID Transponder Benchmark" survey found that this year's chips and tags are 20 percent more sensitive than previous versions, on average, and that many are capable of controlling their communications as a precursor to more intelligence-based use cases.
By Claire Swedberg

The third step for UHF RFID, according to von Bonin, is now under way—namely, providing controllable communication. For example, an untraceable command allows users to set their tags to hide part of their memory. The latest technology, such as that featured in UCODE chips, can enable each chip to respond with only part of its ID number, based on who is interrogating it, or when or where it is being read. The data transmitted could be isolated to the ID for a particular manufacturer or country of origin, or it could be the entire ID number.

Additionally, the UCODE DNA is capable of controlling how loud its tag responses are. They can be set to "shout" (with a nominal read range) or to whisper (with a reduced read range), according to a user's specific needs. That feature enables privacy settings so that, for instance, RFID tag reads cannot be captured from a distance on a tag attached to a purchased garment. However, if the garment were returned to a store, retailers could still read the tag's ID with a reader in close proximity.

Inside the measuring chamber
Another scenario León cites is a crowded, noisy environment in which many tags are being interrogated—for example, as they move through a portal at a dock door. In this case, some tags may be responding to interrogation with a signal that drowns out the less sensitive tags. The toggling functionality in the new chips would then instruct already inventoried tags to lower their voices so that all tags can be detected at once.

Von Bonin sees the fourth step in the evolution of UHF RFID on the horizon as well. This, he says, will involve the intelligence of tags—the ability for them to make decisions based on data, such as detecting a temperature rise and then transmitting an alert indicating as much the next time the tag is read.

Von Bonin cites the analogy of a cup of tea, noting that tracking the conditions of a single hot beverage would be unrealistic with the high cost of most IoT sensor-based technologies. But with a low-cost UHF RFID tag, it becomes possible if there is sufficient sensitivity and low enough power requirements to capture and forward sensor data with a UHF chip. So, for instance, a cup's tag could identify if the tea were too hot or cold, then transmit that information to an interrogator. This could also work with other perishables, such as a frozen pizza coming within proximity of something warm, (a cup of tea, for example), or simply being left out of the freezer. In the former scenario, the interrogator could capture and combine the temperature of one object (the pizza) with the proximity to another (the hot tea, based on its tag location) and could trigger an alert to the system.

Login and post your comment!

Not a member?

Signup for an account now to access all of the features of RFIDJournal.com!

PREMIUM CONTENT
Case Studies Features Best Practices How-Tos
RFID JOURNAL EVENTS
Live Events Virtual Events Webinars
ASK THE EXPERTS
Simply enter a question for our experts.
TAKE THE POLL
JOIN THE CONVERSATION ON TWITTER
Loading
RFID Journal LIVE! RFID in Health Care LIVE! LatAm LIVE! Brasil LIVE! Europe RFID Connect Virtual Events RFID Journal Awards Webinars Presentations