Home Internet of Things Aerospace Apparel Energy Defense Health Care Logistics Manufacturing Retail

Inlay Companies Testing EM Micro's Dual NFC and EPC Chip

EM Microelectronic's new dual-interface chip could enable inlay manufacturers to sell products that can be read using EPC UHF readers for tracking inventory, and by NFC-enabled phones or tablets in stores by consumers or store personnel.
By Claire Swedberg

Typically, the tag could be used as an inventory tool to manage the movements of products from the point of manufacture to the storefront. In this way, EPC UHF readers could track the goods as they pass through distribution centers and are moved to a store's back room or onto the sales-floor shelves, where customers could then select them for purchase. The shoppers would benefit from reading the tags via their NFC-enabled phones, such as most Android-based smartphones that come with built-in NFC readers. (The Apple iPhone 6 also has a built-in NFC reader, but that functionality is currently only useable for Apple Pay transactions.)

The EM4423 chip's NFC functionality could offer a variety of purposes if product manufacturers or retailers so choose, such as directing an NFC-enabled phone to the product brand's website, or to media or content about that product. It could enable customers to sign up for loyalty programs, or to register their new product after buying it. The chip's NFC function could also enable a brand or retailer to count the number of times that an item's tag was interrogated, enabling it to better understand how much interest the product is receiving at the store. The NFC tag could also be used with a phone to authenticate the product, thereby proving that it is not a counterfeit. (Blangy, however, does not specify how Swatch's subsidiary companies might employ the new chip.)

In addition, the system makes data privacy possible, by enabling retailers to use Gen2v2's untraceable or kill command for UHF reading. The kill command renders a UHF function inoperable forever, while an untraceable command would require a password to be used for any subsequent read via UHF. The untraceable command also allows users to change the tag's UHF read range to within a few inches. "Data privacy is very important to consumers, especially in Europe," Blangy states. However, he says, even when the EM4423's UHF function is rendered untraceable or even permanently disabled by the kill command, the chip's NFC operation would remain unchanged, so that the product could be returned to a store, for instance, and its tag could still be interrogated by an NFC reader, but only at close range, thereby protecting the privacy of the tag's data.

It took EM Microelectronic approximately one year to develop the chip, Blangy reports. During that time, he says, the company's efforts failed to generate much interest from the RFID industry, and EM Microelectronic intended to provide the new technology solely to its own parent company. Now, however, it finds that there is considerably more interest from RFID integrators and tag manufacturers, now that the chip has been developed and they can see its value.

Blangy speculates that small retailers may benefit from the dual-frequency RFID labels, since many of them may not use UHF RFID readers and would now be able to utilize the tags already on products that arrive at the store, by scanning each tag's ID number via their NFC phones. Inlay manufacturers, he adds, will also be able to reduce costs, by using the EM4423 to make a dual-frequency tag as opposed to using two separate ICs to produce such a tag.

Login and post your comment!

Not a member?

Signup for an account now to access all of the features of RFIDJournal.com!

PREMIUM CONTENT
Case Studies Features Best Practices How-Tos
RFID JOURNAL EVENTS
Live Events Virtual Events Webinars
ASK THE EXPERTS
Simply enter a question for our experts.
TAKE THE POLL
JOIN THE CONVERSATION ON TWITTER
Loading
RFID Journal LIVE! RFID in Health Care LIVE! LatAm LIVE! Brasil LIVE! Europe RFID Connect Virtual Events RFID Journal Awards Webinars Presentations