—Name withheld
———
That’s an interesting question, and the answer is beyond my knowledge of RF engineering, so I reached out to Neeraj Sood, a researcher at the University of Toronto and a member of McMaster University‘s RFID Applications Lab. Here is an edited version of Neeraj’s response:
“I assume that we are talking about a passive system using inductive coupling, and not an active system. Inductive coupling works in the near field of the reader antenna. The electrical current flowing through the reader antenna produces a magnetic field. When the tag’s antenna is placed in this magnetic field, it produces a current in the tag antenna that allows tag-reader communication to take place.
“The strength of the magnetic field is proportional to 1/r^3, where r is the radial distance from the reader antenna. This means that as we increase the radial distance from the near-field reader antenna, the field’s strength decays as the cube of this distance—a very rapid rate of decay [see the graph below]. Therefore, to use inductive coupling, the tag should be placed less than 0.16 wavelengths away from the reader.
“For passive HF RFID systems, the wavelength is around 22 meters [72 feet], which allows for the tag to be placed a reasonable distance from the reader antenna. However, at 2.4 GHz, the wavelength is quite small—around 12.5 centimeters [4.9 inches]. That means the tag would need to be placed less that 2 centimeters [0.8 inch] from the reader antenna, which would not be useful for most data-collection needs.”

To view a larger version of this graph, click here.
—Mark Roberti, Founder and Editor, RFID Journal
Login and post your comment!
Not a member?
Signup for an account now to access all of the features of RFIDJournal.com!
Previous Post
How Can I Track Bags of Oysters? »