Home Internet of Things Aerospace Apparel Energy Defense Health Care Logistics Manufacturing Retail

Honeybees Are in Trouble—and RFID Can Help

An RFID sensor network can track environmental changes within hives, allowing a beekeeper to infer the insects' health.
By Frank Linton
It is surprisingly easy to measure a brood nest's size remotely. Bees keep their brood at a constant temperature of 95 degrees Fahrenheit (35 degrees Celsius), so a set of RFID temperature sensors embedded in the brood nest area will indicate the volume of brood. Tracking changes in brood volume over time enables the beekeeper to infer the colony's health.

What would an RFID sensor network that monitors colony health look like? Bees raise their brood in frames of honeycomb; there are eight to 10 frames in a hive body, and one or two hive bodies within a hive. Depending on the precision of monitoring desired, anywhere between one and 5 sensors per frame will suffice, resulting in a total of eight and 100 sensors per colony. Each hive might have its own RFID reader to aggregate the data and forward it to a local server, which would then pass that information along to the beekeeper's PC, or post it to a secure Web site, for further processing and display.

This system, then, can inform the beekeeper of each colony's health, as well as when and where intervention might be needed, and what to expect when opening the hive.

An RFID sensor network is a must-have for this application. First, beehives are often placed in agricultural locations, remote from electric power and communications lines. A wireless network with its own power supply, such as solar-rechargeable batteries, is a requirement for such sites, as is a cellular (or possibly radio) communications link. Second, beekeepers must be able to freely manipulate the frames of brood comb. Attaching wired sensors to the frames is a non-starter—only a wireless sensor will do. Third, the sensor must be very thin, and preferably small. A passive sensor might be best for this purpose, though a thin active sensor with at least a three-year lifespan would also be acceptable. Again, an RFID sensor appears to be the only option. Fourth, beekeepers often move frames from hive to hive in order to maintain balance. The ID part of the RFID sensor network would permit the frames to be moved from one hive to another, as it would capture the ID number of each frame within each hive.

Commercial beekeepers presently tend to be one of two types: either large commercial operators that supply thousands of mobile colonies for pollination, or part-time beekeepers that may keep bees in several widely scattered locations, but do so year-round. Both types can benefit from monitoring brood nests with an RFID sensor network. Large commercial operators can expect to reduce colony losses, while simultaneously reducing inspection time, and part-time beekeepers can share data with others located in the same geographic area, to provide insight into locally optimal beekeeping practices.

Frank Linton is a beekeeper and engineer in the Washington, D.C., area. He can be reached at frank.linton@post.harvard.edu.

Login and post your comment!

Not a member?

Signup for an account now to access all of the features of RFIDJournal.com!

PREMIUM CONTENT
Case Studies Features Best Practices How-Tos
RFID JOURNAL EVENTS
Live Events Virtual Events Webinars
ASK THE EXPERTS
Simply enter a question for our experts.
TAKE THE POLL
JOIN THE CONVERSATION ON TWITTER
Loading
RFID Journal LIVE! RFID in Health Care LIVE! LatAm LIVE! Brasil LIVE! Europe RFID Connect Virtual Events RFID Journal Awards Webinars Presentations