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A quick word about my university

University of South Florida — Bull Pride !

- Ranks 1%t in Florida, 7t" in the nation and 16t world-wide among all universities for
granted U.S. patents (Intellectual Property Owners Association)

- $525.4 million in externally funded research grants and contracts in FY 2019 |

- Consistent and strong emphasis on « applied research », strong collaborations and
partnerships with industry !
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A quick word about my research

e Earlier research concentrated on wireless sensor technologies — such as RFID — for
transportation, distribution, cold-chain, pharmaceuticals and healthcare.

e Current research focuses more on wireless sensor data analytics and artificial intelligence
specifically for cold chain, healthcare, and other industrial applications of RFID.
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Front-end: RFID,
wireless sensors

RFID applications in
food, healthcare and
pharma

RFID communication
protocols
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Front-end: RFID,
wireless sensors

RFID applications in
food, healthcare and
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Machine learning
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healthcare

RFID communication
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learning and data
analytics

Back-end: Machine ]

Theory of machine
learning
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10t Year with RFID Journal Live !

 We believe that applied academic research is a key component of any
innovation.

e RFID/IoT — some of the most innovative technologies of the past decade.

* We also believe academia and industry can and should work together to
achieve the best outcome for any implementation.

* So...we’re glad to be a part of this event since 2010 ©
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Today’s Presentation
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Facts of life

 The population of the United States is aging. There are approximately
50 million adults with ages 65 and older in the U.S.

* In 2050, this number is expected to almost double and reach 90
million.

* Falls are the leading cause of both fatal and non-fatal injuries among
older adults.
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But what about the facts of technology?

* Tremendous gain in popularity for mobile and personal health
devices.

* Which means, more data is available to process and analyze.
* Can we do more with more data? Yes !
 More data => Big Data => Artificial Intelligence
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Research objectives

* Can we detect and identify falls using only 3-axis accelerometer time
data coming from standard wireless/RFID wrist brands?

e Can we do more — detect the type of motion based on the same
data?
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Always begin with the same question: What does
the data look like?

Walking accelerometer data

00000

Falling accelerometer data
B 0 560 1OIOO 15|DD 2DIOO 25IOO 3000
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How does the system work?

e

g . .
‘/ Time-domain Feature .
by data extraction Data processing
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Just looking at the raw data is not very helpful !

 Need to extract meaningful information.

* We call this “feature extraction”

* These features could be simple statistical measures.
 Or more complicated.
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
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When simple measures are not enough...

X1

i +2

pitch = arctan( )—arctan(
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Do they make a
difference?

RFiD
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“Intuitive” features

Drinking from a glass (Class 2)

5F J
L Mean of X /e e
~ | I |7
= -5 | I .
€ | I |
| I |1
| I |
[ | I ||
15 :
First mean-crossing : time : : :
# of mean-crossings=4 | < ——————~—— "~ ———— > | |1

Max period
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Class 1 Class 2 Class 3 Class 4 Class5 Class 6 Class 7
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Our early research looked found that using
these features together is better |

Used Features Accuracy %
Mean(x,y,z), Variance(x,y,z) 60.5
Mean(x,y,z), Variance(x,y,z), PRY 66.9
Mean(x,y,z), Variance(x,y,z), PRY, MCR 81
Mean(x,y,z), Variance(x,y,z), PRY, MCR, FCR 82.6
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Question is — how do we use them together?

 Artificial intelligence !
* We are doing pattern recognition.
* To recognize means to classify a sample based on its class label.

e Two classifiers:
e Support vector machines
e Artificial neural networks
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Machine Learning
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It started with linear regression, but morphed into something more...

Regular

Input Layer ~ Hidden Layers Output Layer
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Where are we at now?

A brown bear
standing on top of
a lush green field.

A baseball game in
progress.

A person holding a A close up of a
cell phone in their person brushing his
hand. teeth.
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Can we use these advances for fall/activity
recognition?

* We will use support vector machines.
e Why?

e SVMs are very powerful binary classifiers.
 Binary—asin, 1or0.
e Has the patient fallen? Or not?

* How do they work?
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Support Vector Machines

RFiD
i\ SEPTEMBER 30 - OCTOBER 1, 2020
LIVE!




What if my samples are not linearly
separable? Can we see beyond the tuo

dimensions ? How about adding a
third dimension in the form of
“distance from the center” ?

4
3
2
1
aF
1
2
3
4
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Early results on fall detection

e Publicly available datasets are not readily available on patient falls
using accelerometers.

e Limited dataset — obtained using real wireless wristbands in an actual
hospital.

* 100% accuracy with no false positives (identify a fall when there is
none) or false negatives (miss a fall when someone did).

RFiD

JOURNAL ~____ SEPTEMBER 30 - OCTOBER 1, 2020
LIVE!




New data |

e Publicly available UniMiB-SHAR dataset
e 11771 samples for fall data (Labeled as AF-2, Action vs Fall Binary)
e 30 different users
* Three-axis acceleration data from simple sensors

 Like before when we use the algorithm we previously developed with
SVM and the same 9 features we get:
* 96.85% accuracy
e Better than state-of-the-art reported on this dataset
e But not necessarily error-free
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Shall we try something else?
Did someone say Deep Learning?

m/s™2

What is so special about Deep Learning for this application?

No complicated feature extractions — let the algorithm learn everything from raw, unfiltered data

. Fall . Standing up from sitting (class3)
5.04 i {M 3 h‘-\;\_
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'I'lme domam samples | .: Tlme ::icnmaln samples
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Perhaps not...  « ... N Iq ST A |
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To learn this we need something more
powerful...

Just like a human being, you train a
neural network by showing examples and
telling it which class they belong to.

Through iterative learning process, the
neural network learns over time to
identify different data samples.

And then you test it on samples it has
never seen before |

500 Hidden Neurons 500 Hidden Neurons
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How do they learn?
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Does complexity help?

Yes —as long as you keep in mind thatisis pata  HL1
not an exact science to choose the best

settings.

Does that remind you of another
technology? ©

99.01% - best results reported so far on

this fall detection dataset
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HL2 HL3 HL4 HL5 Mean

Acc

raw

data

(%)

500 — — — — 98.76

AF-2 500 500 — — — 98.64
11771 250 250 50 — — 98.89
observa 250 250 50 20 — 99.01
-tions 250 250 50 510) 20 98.51
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Can it be used for more than simply detecting
patient falls?

We anticipate...if we can scale beyond
binary detections of fall versus no-fall, there
are tremendous applications in healthcare !

e Recognize daily activities

e Assist in physical therapy of elderly patients

e Welfare checks and automated reporting

* Preemptive diagnosis and detection of falls or
movement issues.
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Our previous study on a different, smaller scale
dataset...

B. Bruno, F. Mastrogiovanni, A. Sgorbissa, T. Vernazza, and R.
Zaccaria, “Analysis of human behavior recognition algorithms based on

acceleration data,” 2013 IEEE Int. Conf. Robot. Autom., pp. 1602—1607,
2013.

* 54% true-positive-rate

e 81% true-negative-rate

VS.

° 91.15% true-positive-rate with Al
e 98.5% true-negative-rate with Al

with real-time operational speed !
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Standing up from lying (classl) Lying down from standing (class2)
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s new technology better?

Data HL1 HL2 HL3 HL4 HL5 Mean Mean * Highest reported

Acc Acc accuracy in the

data tures literature is 88.41%

(%) (%)

00— g7 L6l e Highest accuracy we

A-9 500 500 — — — 87.86 92.07 1 1 o
7579 250 250 50 — — 8820 93.79 could obtain is 88.20%
observa 250 250 50 20 — 85.75 91.87
tions 250 250 50 50 20  84.83 92.05 e Shall we go back to

features?
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What's an excellent example for deep
learning?

e Speech recognition...
e How do they do it ?

e Google, Apple, Facebook, Microsoft, etc. all use the same underlying technology
called...

e LONG-SHORT-TERM-MEMORY (LSTM) recurrent neural networks

e LSTM has feedback connections which can learn the short-term and long-term
dependencies in temporal (time-based) data

e Data format for fall detection/activity recognition?

e You guessed it: time based !

RFiD

y /o =@l OU%NA SEPTEMBER 30 - OCTOBER 1, 2020
Bl LIVE! _



Again — does it help?

As a quick reminder: state-of-the-art on this
Mean accuracy of RNN-LSTM model on dataset was 88.41%

UniMiB-SHAR dataset
Data HL1 HL2 HL3 HL4 HL5 Mean Mean

Ace  Acc Our best performance was 88.20%

raw fea-

data tures

(%) (%)
500 — — — — 9413 9578 Best performance we got using LSTM on raw,
500 500 — — — 97.89 9584 unfiltered time-domain acceleration data is

A-9 250 250 50 — —  97.96  96.35 98.02%

250 250 50 20 —  98.02  95.84

250 250 &0 90 20 97.11 95.75

Best results ever reported in the literature
for human activity recognition on this
dataset !
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Conclusions

 We are finally there !
e RF/wireless technology is easy to implement and generate lots of data.

e Data science (Al, machine learning, analytics, etc.) has come a long way within
the past decade.

e Together they unlock applications from healthcare to supply chain we never
thought possible before.

* We can now detect patient falls up to 99-100% accuracy.
* We can detect common human activities up to 98% accuracy.

* We can run these algorithms in near real time to improve patient
outcomes and quality of life related to falling incidents.
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Thank you for listening ©

e Questions? Comments?

* If you'd like to learn more about our research on using artificial
intelligence/machine learning on wireless sensor and RFID applications:
e juysal@usf.edu
 813-974-8823
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THANK YOU
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