Home Internet of Things Aerospace Apparel Energy Defense Health Care Logistics Manufacturing Retail

Access This Premium Content

Options To Access This Article:

What Subscribers Are Saying

  • "Probably the best investment I've ever made."
    Steve Meizlish, President & CEO, MeizCorp Services, Inc.
  • "I have found that RFID Journal provides an objective viewpoint of RFID. It you are looking for a resource that provides insights as to the application and implications of deploying RFID, RFID Journal will meet your needs, It gives you a broad perspective of RFID, beyond the retail supply chain."
    Mike O'Shea, Director of Corporate AutoID/RFID Strategies & Technologies, Kimberly-Clark Corp.
  • "No other source provides the consistent value-added insight that Mark Robert and his staff do. In a world dominated by press release after press release, RFID Journal is developing as the one place to go to make the most sense out of the present and future of RFID in commerce."
    Bob Hurley, Project Leader for RFID, Bayer HealthCare's Consumer Care Division
  • "RFID Journal is the one go-to source for information on the latest in RFID technology."
    Bruce Keim, Director, Hewlett-Packard
  • "RFID Journal is the only source I need to keep up to the minute with the happenings in the RFID world."
    Blair Hawley, VP of Supply Chain, Remington Products Company

Giving Nature a Helping Hand

With metamaterials, we can create thin RFID tags for tracking canned items.
By Isaac Ehrenberg and Sanjay Sarma
Feb 01, 2012—Over the past several years, RFID providers have developed passive ultra­high-frequency tags that work on or near metal objects. Because metal reflects RF energy, these so-called metal tags incorporate either a 3-D antenna or a substrate, which distances the tag from the metal. That way, the tag antenna can absorb enough RF energy to respond to the reader. But these modifications increase the thickness of the RFID tag. Whereas a standard label is roughly 100 microns thick, tags for metal surfaces are typically 10 to 50 times thicker. They are suitable for tagging industrial equipment, tools, pipes and other high-value metallic objects, but are too bulky and expensive to track smaller items, such as soft drink or soup cans, in the supply chain.

At MIT's Auto-ID Lab, we're working to reduce the substrate thickness required for an RFID metal tag, while maintaining reasonable performance levels. Using a design technique called Transformation Theory, we can mathematically "squeeze" the substrate that resides between the tag and the conductive surface by altering its electromagnetic parameters—its permeability and permittivity. In theory, the material parameters that result would be ideal to create an ultrathin substrate for an RFID antenna—it could even be 10 microns thick. Unfortunately, though, as we reduce the substrate's thickness, the optimal parameters include a fair amount of permeability, a property normally associated with ferrites (magnetic substances with high electrical resistivity) and typically nonexistent at UHF frequencies.

Since the material properties we need to create an ultrathin substrate aren't available in any catalog, we had to fabricate them ourselves. To achieve the unnaturally high permeability and permittivity values required, we built a metamaterial (an artificial material) made up of split-ring resonators. These resonators are frequency-dependent metamaterial components that typically exhibit permeability in a small frequency band. They usually consist of an array of planar structures for exotic cloaking applications at much higher frequencies than RFID, so we redesigned the split rings in a way that reduces their frequency to UHF, and minimizes their thickness while maximizing their high-permeability bandwidth.

We believe the substrates developed using this methodology can be less than 1 millimeter thick and mass- manufactured easily—both requirements to keep the costs of using this technology for UHF tags down. But it is still a work in progress—our goal is to develop the thinnest substrate possible. In addition, while the substrate is designed to perform with any standard UHF RFID tag antenna, we are also looking into optimal antenna designs to complement it.

Isaac Ehrenberg is a doctoral candidate at the Massachusetts Institute of Technology and a research assistant at the Auto-ID Labs at MIT. Sanjay Sarma is a professor of engineering at MIT and a co-founder of the MIT Auto-ID Lab.
To continue reading this article, please log in or choose a purchase option.

Option 1: Become a Premium Member.

One-year subscription, unlimited access to Premium Content: $189

Gain access to all of our premium content and receive 10% off RFID Reports and RFID Events!

Option 2: Purchase access to this specific article.

This article contains 452 words and 1 page. Purchase Price: $19.99

Upgrade now, and you'll get immediate access to:

  • Case Studies

    Our in-dept case-study articles show you, step by step, how early adopters assessed the business case for an application, piloted it and rolled out the technology.

    Free Sample: How Cognizant Cut Costs by Deploying RFID to Track IT Assets

  • Best Practices

    The best way to avoid pitfalls is to know what best practices early adopters have already established. Our best practices have helped hundreds of companies do just that.

  • How-To Articles

    Don’t waste time trying to figure out how to RFID-enable a forklift, or deciding whether to use fixed or mobile readers. Our how-to articles provide practical advice and reliable answers to many implementation questions.

  • Features

    These informative articles focus on adoption issues, standards and other important trends in the RFID industry.

    Free Sample: Europe Is Rolling Out RFID

  • Magazine Articles

    All RFID Journal Premium Subscribers receive our bimonthly RFID Journal print magazine at no extra cost, and also have access to the complete online archive of magazine articles from past years.

Become a member today!

RFID Journal LIVE! RFID in Health Care LIVE! LatAm LIVE! Brasil LIVE! Europe RFID Connect Virtual Events RFID Journal Awards Webinars Presentations